38 research outputs found

    Neural representation of calling songs and their behavioral relevance in the grasshopper auditory system

    Get PDF
    Acoustic communication plays a key role for mate attraction in grasshoppers. Males use songs to advertise themselves to females. Females evaluate the song pattern, a repetitive structure of sound syllables separated by short pauses, to recognize a conspecific male and as proxy to its fitness. In their natural habitat females often receive songs with degraded temporal structure. Perturbations may, for example, result from the overlap with other songs. We studied the response behavior of females to songs that show different signal degradations. A perturbation of an otherwise attractive song at later positions in the syllable diminished the behavioral response, whereas the same perturbation at the onset of a syllable did not affect song attractiveness. We applied naïve Bayes classifiers to the spike trains of identified neurons in the auditory pathway to explore how sensory evidence about the acoustic stimulus and its attractiveness is represented in the neuronal responses. We find that populations of three or more neurons were sufficient to reliably decode the acoustic stimulus and to predict its behavioral relevance from the single-trial integrated firing rate. A simple model of decision making simulates the female response behavior. It computes for each syllable the likelihood for the presence of an attractive song pattern as evidenced by the population firing rate. Integration across syllables allows the likelihood to reach a decision threshold and to elicit the behavioral response. The close match between model performance and animal behavior shows that a spike rate code is sufficient to enable song pattern recognition.Peer Reviewe

    A neuromorphic model of olfactory processing and sparse coding in the Drosophila larva brain

    Full text link
    Animal nervous systems are highly efficient in processing sensory input. The neuromorphic computing paradigm aims at the hardware implementation of neural network computations to support novel solutions for building brain-inspired computing systems. Here, we take inspiration from sensory processing in the nervous system of the fruit fly larva. With its strongly limited computational resources of <200 neurons and <1.000 synapses the larval olfactory pathway employs fundamental computations to transform broadly tuned receptor input at the periphery into an energy efficient sparse code in the central brain. We show how this approach allows us to achieve sparse coding and increased separability of stimulus patterns in a spiking neural network, validated with both software simulation and hardware emulation on mixed-signal real-time neuromorphic hardware. We verify that feedback inhibition is the central motif to support sparseness in the spatial domain, across the neuron population, while the combination of spike frequency adaptation and feedback inhibition determines sparseness in the temporal domain. Our experiments demonstrate that such small, biologically realistic neural networks, efficiently implemented on neuromorphic hardware, can achieve parallel processing and efficient encoding of sensory input at full temporal resolution

    Is telomere length socially patterned? Evidence from the West of Scotland Twenty-07 study

    Get PDF
    Lower socioeconomic status (SES) is strongly associated with an increased risk of morbidity and premature mortality, but it is not known if the same is true for telomere length, a marker often used to assess biological ageing. The West of Scotland Twenty-07 Study was used to investigate this and consists of three cohorts aged approximately 35 (N = 775), 55 (N = 866) and 75 years (N = 544) at the time of telomere length measurement. Four sets of measurements of SES were investigated: those collected contemporaneously with telomere length assessment, educational markers, SES in childhood and SES over the preceding twenty years. We found mixed evidence for an association between SES and telomere length. In 35-year-olds, many of the education and childhood SES measures were associated with telomere length, i.e. those in poorer circumstances had shorter telomeres, as was intergenerational social mobility, but not accumulated disadvantage. A crude estimate showed that, at the same chronological age, social renters, for example, were nine years (biologically) older than home owners. No consistent associations were apparent in those aged 55 or 75. There is evidence of an association between SES and telomere length, but only in younger adults and most strongly using education and childhood SES measures. These results may reflect that childhood is a sensitive period for telomere attrition. The cohort differences are possibly the result of survival bias suppressing the SES-telomere association; cohort effects with regard different experiences of SES; or telomere possibly being a less effective marker of biological ageing at older ages

    Rapid learning dynamics in individual honeybees during classical conditioning

    Get PDF
    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled

    A mechanistic model for reward prediction and extinction learning in the fruit fly

    No full text
    Extinction learning, the ability to update previously learned information by integrating novel contradictory information, is of high clinical relevance for therapeutic approaches to the modulation of maladaptive memories. Insect models have been instrumental in uncovering fundamental processes of memory formation and memory update. Recent experimental results in Drosophila melanogaster suggest that, after the behavioral extinction of a memory, two parallel but opposing memory traces coexist, residing at different sites within the mushroom body. Here we propose a minimalistic circuit model of the Drosophila mushroom body that supports classical appetitive and aversive conditioning and memory extinction. The model is tailored to the existing anatomical data and involves two circuit motives of central functional importance. It employs plastic synaptic connections between Kenyon cells and mushroom body output neurons (MBONs) in separate and mutually inhibiting appetitive and aversive learning pathways. Recurrent modulation of plasticity through projections from MBONs to reinforcement-mediating dopaminergic neurons implements a simple reward prediction mechanism. A distinct set of four MBONs encodes odor valence and predicts behavioral model output. Subjecting our model to learning and extinction protocols reproduced experimental results from recent behavioral and imaging studies. Simulating the experimental blocking of synaptic output of individual neurons or neuron groups in the model circuit confirmed experimental results and allowed formulation of testable predictions. In the temporal domain, our model achieves rapid learning with a step-like increase in the encoded odor value after a single pairing of the conditioned stimulus with a reward or punishment, facilitating single-trial learning. Significance Statement A stressful experience can lead to a strong fear memory where a negative consequence has been associated with a certain stimulus or event. This can trigger fear whenever the same or similar event occurs. Extinction of such a maladaptive memory through extinction learning can thus be of high therapeutic value. Here we present novel theoretical work on the formation and extinction of memories in the fruit fly that suggests an underlying neural circuit mechanism for reward prediction based on recently reported anatomical, physiological and behavioral data. Our findings propose how the theoretical concept of prediction error coding can be realized in a biologically realistic neuronal circuit motif to enable associative learning, saturation of learning, single-trial memory, and memory extinction

    A spiking neural program for sensorimotor control during foraging in flying insects

    No full text
    Foraging is a vital behavioral task for living organisms. Behavioral strategies and abstract mathematical models thereof have been described in detail for various species. To explore the link between underlying neural circuits and computational principles, we present how a biologically detailed neural circuit model of the insect mushroom body implements sensory processing, learning, and motor control. We focus on cast and surge strategies employed by flying insects when foraging within turbulent odor plumes. Using a spike-based plasticity rule, the model rapidly learns to associate individual olfactory sensory cues paired with food in a classical conditioning paradigm. We show that, without retraining, the system dynamically recalls memories to detect relevant cues in complex sensory scenes. Accumulation of this sensory evidence on short time scales generates cast-and-surge motor commands. Our generic systems approach predicts that population sparseness facilitates learning, while temporal sparseness is required for dynamic memory recall and precise behavioral control. Our work successfully combines biological computational principles with spike-based machine learning. It shows how knowledge transfer from static to arbitrary complex dynamic conditions can be achieved by foraging insects and may serve as inspiration for agent-based machine learning

    Neural Coding: Sparse but On Time

    Get PDF
    SummaryTo code information efficiently, sensory systems use sparse representations. In a sparse code, a specific stimulus activates only few spikes in a small number of neurons. A new study shows that the temporal pattern across sparsely activated neurons encodes information, suggesting that the sparse code extends into the time domain

    Mushroom Body Output Neurons Encode Odor-Reward Associations

    No full text
    Strube-Bloss M, Nawrot MP, Menzel R. Mushroom Body Output Neurons Encode Odor-Reward Associations. Journal of Neuroscience. 2011;31(8):3129-3140
    corecore